Heisenberg subalgebra, dressing approach and super bi-Hamiltonian integrable system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L311
(http://iopscience.iop.org/0305-4470/27/10/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:20

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Heisenberg subalgebra, dressing approach and super bi-Hamiltonian integrable system

S Palit and A Roy Chowdhury
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 700 032, India

Received 23 March 1994

Abstract

Starting with the affine super-algebra $\widehat{O s p}(2,2)$, we have shown how different choices of Heisenberg subalgebras in conjunction with the dressing operator approach of Wilson leads to different super-symmetric bi-Hamiltonian systems. Subsequently, the explicit form of the symplectic operators are deduced with the help of the Trace identity. Lastly a possible relation with the τ-function is indicated.

Enlarging the class of integrable systems is one of the most important motivations of presentday research. Of late, several methodologies have been put forward, each with some distinct advantages and disadvantages. Of course the properties of the infinite dimensional Lie algebras [1] (loop algebras or Kac-Moody algebras) form the basis of all such approaches. In the study of the representation theory of such infinite dimensional Lie algebras, an essential role is always played by the Heisenberg subalgebra [2]. In this letter we have analysed the hierarchy of equations associated with the supersymmetric affine Lie algebra $\widehat{O s p}(2,2)$ [3] by using the various types of Heisenberg subalgebra of it. The method we follow is the dressing operator method of Wilson [4]. Subsequently we have deduced the bi-Hamiltonian form of these equations using the generalized form of the Trace identity [5]. We also indicate a possible relation with the τ-functions [6].

The supersymmetric Lie algebra $\operatorname{Osp}(2,2)$ is generated by the following set of generators:

$$
\left\{t_{0}, t_{ \pm}, t_{(0)}, t_{ \pm 1 / 2}, t_{(\pm 1 / 2)}\right\}
$$

where $t_{0}, t_{ \pm}, t_{(0)}$ are Bosonic and $t_{ \pm 1 / 2}, t_{(\pm 1 / 2)}$ are Fermionic. A matrix belonging to the $\operatorname{Osp}(2,2)$ Lie superalgebra will usually have the form:

$$
\left(\begin{array}{ll}
B_{1} & F_{1} \tag{1}\\
F_{2} & B_{2}
\end{array}\right)
$$

where B_{1}, B_{2} are bosonic and F_{1}, F_{2} are fermionic blocks. The matrix is supertraceless $\operatorname{tr} B_{1}-\operatorname{tr} B_{2}=0$. The lowest dimensional representation of $\operatorname{Osp}(2,2)$ is 3×3. The corresponding affine untwisted Lie superalgebra has the generators $t_{0} \lambda^{m}, t_{ \pm} \lambda^{m}, t_{(0)} \lambda^{m}$, $t_{ \pm 1 / 2} \lambda^{m}, t_{(\pm 1 / 2)} \lambda^{m}$ where m is an integer and $\lambda \in s^{1}$. The commutation rules are well known and we do not quote them here.

In the Wilson's dressing approach, τ-function is written as the following vacuum expectation value

$$
\begin{equation*}
\tau_{l}(t)=\left\langle V_{0}, T^{-t} \Psi_{\mathrm{vac}(l)} n(x) V_{0}\right\rangle \tag{2}
\end{equation*}
$$

where V_{0} is the highest weight vector of the representation, $n(x)$ is a non-unique group element that produces the τ-function. For the definition of T and other details see [7]. Now

$$
\begin{equation*}
\Psi_{\mathrm{vac}}(t)=\exp \left(\sum_{i>0} p_{i} t_{i}\right) \tag{3}
\end{equation*}
$$

where p_{i} are elements of the Heisenberg subalgebra, and t_{i} are complex variables in which we intend to study the evolution of the nonlinear fields.

An arbitrary group element n in the Kac-Moody group $\operatorname{Osp}(2 / 2) \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$ can be factorized as follows:

$$
\begin{align*}
& n=n_{_} n_{0} n_{+} \\
& n_{-}=1+\lambda^{-1} M_{-1}+\lambda^{-1 / 2} M_{-1 / 2}+\cdots \tag{4}\\
& n_{+}=1+\lambda N_{1}+\lambda^{1 / 2} N_{1 / 2}+\cdots
\end{align*}
$$

where N_{i}, M_{i} are arbitrary elements of $\operatorname{Osp}(2 / 2)$ with

$$
\begin{equation*}
n_{0}=N_{-} \omega H N_{+} \tag{5}
\end{equation*}
$$

where $N_{-}\left(N_{+}\right)$is the exponentiation of a strictly lower (upper) triangular matrix, ω is a Weyl group element and H is the exponentiation of an element of the Cartan subalgebra. Such a factorization is known as Birkhoff decomposition. Such a type of Birkhoff decomposition was used by Mulase and Ueno [8] for the supersymmetric systems.

Let us now set

$$
\begin{equation*}
\hat{\Psi}^{l}=T^{-l} \Psi_{\mathrm{vac}}(t) n(x) . \tag{6}
\end{equation*}
$$

Then by the Birkhoff decomposition of $\hat{\Psi}^{l}$ we can write

$$
\begin{equation*}
\hat{\Psi}^{l}=\hat{\Psi}_{-}^{l} \hat{\Psi}_{0}^{l} \hat{\Psi}_{+}^{l} \tag{7}
\end{equation*}
$$

If now the i th evolution of $\hat{\Psi}^{l}$ obeys $\partial_{t} \hat{\Psi}^{l}=p_{i} \hat{\Psi}^{l}$, then from equation (7) we get

$$
\left(\hat{\Psi}^{l}\right)^{-1} \partial_{t_{i}} \cdot \hat{\Psi}_{-}^{l}+\left(\partial_{t_{i}} \cdot \hat{\Psi}_{0,+}^{l}\right)\left(\hat{\Psi}_{0,+}^{l}\right)^{-1}=\hat{R}^{l}\left(p_{i}\right)
$$

where $\hat{\Psi}_{0,+}^{l}=\hat{\Psi}_{0}^{l} \hat{\Psi}_{+}^{l}$

$$
\hat{R}_{\left(p_{i}\right)}^{\prime}=\left(\hat{\Psi}_{-}^{l}\right)^{-1} p_{i} \hat{\Psi}_{-}^{l} .
$$

So if we write $\hat{R}^{l}\left(p_{i}\right)=\hat{R}_{+}^{l}\left(p_{i}\right)+\hat{R}_{-}^{l}\left(p_{i}\right)$ then we get two equations,

$$
\begin{align*}
& {\left[\partial_{t_{i}}+\hat{R}_{-}^{l}\left(p_{i}\right)\right]\left(\hat{\Psi}_{-}^{l}\right)^{-1}=0} \tag{8}\\
& {\left[\partial_{t_{i}}-\hat{R}_{+}^{l}\left(p_{i}\right)\right] \hat{\Psi}_{0,+}^{l}=0 .} \tag{9}
\end{align*}
$$

Equations (8) and (9) are the required Lax equations.
We now apply the above formalism to our case of $\widehat{O s p}(2,2)$. The elements of the Heisenberg subalgebra can be constructed either in a purely bosonic way or by keeping both bosonic and fermionic generators. For example,

$$
\left.\begin{array}{l}
p_{1}=t_{-}+t_{+} \lambda \\
q_{1}=t_{+}+t_{-} \lambda \tag{11}
\end{array}\right\}
$$

satisfy $\left[p_{i}, q_{i}\right]=k / 2(i=1,2)$.
In equation (11), θ stands for an anticommuting constant. To calculate \hat{R}_{+}^{l}, we start with p_{2} and expand $\hat{\Psi}_{-}^{l}$ as:

$$
\begin{align*}
& \hat{\Psi}_{-}^{l}=1+\lambda^{-1} A_{1}+\lambda^{-1 / 2} A_{-1 / 2}+\cdots \\
& A_{\mathrm{I}}=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & \mu_{1} \\
\gamma_{1} & \delta_{1} & \nu_{1} \\
\phi_{1} & \psi_{1} & \alpha_{1}+\delta_{1}
\end{array}\right) A_{-1 / 2}=\left(\begin{array}{ccc}
a_{1} & r_{1} & s_{1} \\
c_{1} & b_{1} & f_{1} \\
g_{1} & h_{1} & a_{1}+b_{1}
\end{array}\right) \tag{12}
\end{align*}
$$

so that one gets

$$
\begin{gather*}
\hat{R}_{+}^{l}\left(p_{2}\right)=\left[\left(\hat{\Psi}_{-}^{l}\right)^{-1} p_{2}\left(\hat{\Psi}_{-}^{l}\right)\right]_{+}=t_{+} \lambda+t_{-}+\left[t_{+, A-1 / 2}\right] \lambda^{1 / 2}+\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta \lambda^{1 / 2} \\
+\left[t_{+, A-1}\right]+\left[\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta, A_{-1 / 2}\right] \tag{13}
\end{gather*}
$$

With a redefinition of the unknown functions involved in the matrices $A_{1}, A_{-1 / 2}$, we can recast $\hat{R}_{+}^{l}\left(p_{2}\right)$ as:

$$
\hat{R}_{+}^{l}\left(p_{2}\right)=\left(\begin{array}{ccc}
-r_{2} & \alpha_{2}-\lambda^{2} & c_{2}+\theta \lambda \tag{14}\\
1 & \beta_{2}+r_{2} & b_{2}+\theta \lambda \\
0 & \phi_{2} & \beta_{2}
\end{array}\right)
$$

To simplify, we choose $\beta_{2}=r_{2}=\beta, C_{2}+\theta \lambda=b, b_{2}+\theta \lambda=0$ whence

$$
\hat{R}_{+}^{l}\left(p_{2}\right)=\left(\begin{array}{ccc}
-\beta & \alpha-\lambda^{2} & b \tag{15}\\
1 & 2 \beta & 0 \\
0 & \phi & \beta
\end{array}\right)
$$

Zero curvature equation can now be written as:

$$
\begin{equation*}
\frac{\partial J_{x}}{\partial t_{i}}=\left[J_{i}, J_{x}\right]+\frac{\partial J_{i}}{\partial x} \quad i=1,2 \tag{16}
\end{equation*}
$$

$J_{x}=\hat{R}_{+}^{l}\left(p_{2}\right)$, and $J_{i} \in \operatorname{Osp}(2,2)$ is an arbitrary matrix written as

$$
J_{i}=\left(\begin{array}{ccc}
n & \gamma & \delta \tag{17}\\
c & m & f \\
g & h & n+m
\end{array}\right)
$$

So equation (16) immediately yields

$$
\left.\begin{array}{rl}
\frac{\partial \beta}{\partial t_{i}}= & -b g+2 m^{\prime}-3 c^{\prime} \beta-3 c \beta^{\prime}+c^{\prime \prime}-\phi^{\prime} f \\
\frac{\partial \alpha}{\partial t_{i}}= & 2 C^{\prime}\left(\alpha-\lambda^{2}\right)+4 b g \beta-9 m^{\prime} \beta+18 C^{\prime} \beta^{2}+18 C \beta^{\prime} \beta \\
& \quad+4 \phi f \beta+c \alpha^{\prime}+2 b^{\prime} g+3 b g^{\prime}-3 m^{\prime \prime}+12 C^{\prime} \beta^{\prime}+6 c \beta^{\prime \prime}-2 c^{\prime \prime \prime}+\phi^{\prime} f
\end{array}\right] \begin{aligned}
\frac{\partial \phi}{\partial t_{i}}= & g\left(\alpha-\lambda^{2}\right)+\beta(2 g \beta-2 \phi c)+(m+c) \phi+g^{\prime} \beta+2 g \beta^{\prime}+\phi^{\prime} c+\phi c^{\prime}-g^{\prime \prime} \\
\frac{\partial b}{\partial t_{i}}= & 2(c b-f \beta) \beta-\left(\alpha-\lambda^{2}\right) f-b m+c^{\prime} b+c b^{\prime}+f^{\prime} \beta-f \beta^{\prime}+f^{\prime \prime}
\end{aligned}
$$

In these equations we consider c, m, g, f as unknown functions and expand them as a power series in λ

$$
\begin{align*}
& c=\sum_{j=0}^{n} C_{j}(\alpha, \beta, \phi, b) \lambda^{n-j} \\
& m=\sum_{j=0}^{n} E_{j}(\alpha, \beta, \phi, b) \lambda^{n-j} \tag{19}\\
& g=\sum_{j=0}^{n} B_{j}(\alpha, \beta, \phi, b) \lambda^{n-j} \\
& f=\sum_{j=0}^{n} F_{j}(\alpha, \beta, \phi, b) \lambda^{n-j} .
\end{align*}
$$

Substituting in (18) and equating powers of λ yields

$$
\begin{align*}
& \frac{\partial \beta}{\partial t_{i}}=-b B_{n}+2 \partial E_{n}+\left(\partial^{2}-3 \beta \partial-3 \beta^{\prime}\right) C_{n}-\phi F_{n} \\
& \frac{\partial \alpha}{\partial t_{i}}=\left(4 b \beta+2 b^{\prime}+3 b \partial\right) B_{n}-\left(9 \beta \partial+3 \partial^{2}\right) E_{n}+\left(2 \alpha \partial+18 \beta^{2} \partial+18 \beta^{\prime} \beta+\alpha^{\prime}\right. \\
&\left.+12 \beta^{\prime} \partial+6 \beta^{\prime \prime}-2 \partial^{2}\right) c_{n}+\left(4 \phi \beta+\phi^{\prime}\right) E_{n} \\
& \frac{\partial \phi}{\partial t_{i}}=\left(\alpha+2 \beta^{2}+\beta \partial+2 \beta^{\prime}-\partial^{2}\right) \beta_{n}+\phi E_{n}+\left(-2 \beta \phi+2 \phi \partial+\phi^{\prime}\right) C_{n} \\
& \frac{\partial b}{\partial t_{i}}=-b E_{n}+\left(2 b \beta+b^{\prime}+b \partial\right) C_{n}-\left(2 \beta^{2}+\alpha-\beta \partial+\beta^{\prime}-\partial^{2}\right) F_{n} \tag{20}
\end{align*}
$$

giving the nth set of equations in the hierarchy.
We now consider symplectic structure. To identify the Poisson structure associated with the above nonlinear equation we observe that the Hamiltonian is given by

$$
\begin{equation*}
H=K\left(J_{1}, \frac{\delta J_{x}}{\delta \lambda}\right)=\sum_{k} H_{k} \lambda^{-k} \tag{21}
\end{equation*}
$$

where K is the Killing form given as $K(x, y)=\operatorname{str}(x, y), x, y \in \operatorname{Osp}(2,2)$. The variational formalism for such zero curvature equation was given by Zhang, who showed that,

$$
\left(\frac{\delta}{\delta U_{j}}\right) \operatorname{str}\left(\bar{J}_{i} \frac{\partial J_{x}}{\partial \lambda}\right)=\frac{\partial}{\partial \lambda} \operatorname{str}\left(\bar{J}_{i} \frac{\partial J_{x}}{\partial U_{i}}\right)
$$

or

$$
\begin{equation*}
\left(\frac{\delta}{\delta U_{i}}\right)\left\langle\bar{J}_{i}, \frac{\partial J_{x}}{\partial \lambda}\right\rangle=\frac{\partial}{\partial \lambda}\left\langle\bar{J}_{i}, \frac{\partial J_{x}}{\partial U_{i}}\right\rangle \tag{22}
\end{equation*}
$$

where U_{i} stands for the nonlinear field variables and $\bar{J}=\lambda^{\mu J}, \mu$ any positive integer. Equation (22) goes by the name of the Trace identity. Actually Zhang proved it for the case of ordinary Lie algebra which can easily be extended to the supersymmetric case by using graded products and graded commutators. In the following we will be using (22) to identify the coefficients occurring in (20) as the variational derivatives of H defined in (21). After explicit evaluation we get

$$
\begin{align*}
& \frac{\delta H_{k}}{\delta \beta}=3(l-k) E_{n+k-l} \\
& \frac{\delta H_{k}}{\delta \alpha}=(l-k) C_{n+k-l} \tag{23}\\
& \frac{\delta H_{k}}{\delta b}=(l-k) B_{n+k-l} \quad \text { and } \\
& \frac{\delta H_{k}}{\delta \phi}=(l-k) F_{n+k-l}
\end{align*}
$$

which at once permits us to identify the following Poisson-brackets forming the second symplectic structure:

$$
\begin{align*}
& \{\beta(x), b(y)\}=-b \delta(x-y) \\
& \{\beta(x), \beta(y)\}=2 \partial x \delta(x-y) \\
& \{\beta(x), \alpha(y)\}=\left(\partial^{2}-3 \beta \partial-3 \beta^{\prime}\right) \delta(x-y) \\
& \{\beta(x), \phi(y)\}=-\phi \delta(x-y) \\
& \{\alpha(x), b(y)\}=\left(4 b \beta+2 b^{\prime}+3 b \partial\right) \delta(x-y) \\
& \{\alpha(x), \alpha(y)\}=\left(2 \alpha \partial+18 \beta^{2} \partial+18 \beta^{\prime} \beta+\alpha^{\prime}+12 \beta^{\prime} \partial+b \beta^{\prime \prime}-2 \partial^{2}\right) \delta(x-y) \\
& \{\alpha(x), \phi(y)\}=\left(4 \phi \beta+\phi^{\prime}\right) \delta(x-y) \\
& \{\phi(x), b(y)\}=\left(\alpha+2 \beta^{2}+\beta \partial+2 \beta^{\prime}-\partial^{2}\right) \delta(x-y) \\
& \{\phi(x), \phi(y)\}=\{b(x), b(y)\}=0 . \tag{24}
\end{align*}
$$

In our above analysis we have derived a new hierarchy of supersymmetric integrable systems by using the dressing operator approach of Wilson from a specific realization of the Heisenberg subalgebra. As noted previously there can be another choice for this subalgebra, generated by $p_{1} \cdot q_{1}$ given in (10). For that case if we take

$$
A_{-1}=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & 0 \\
r_{1} & \delta_{1} & 0 \\
0 & 0 & \alpha_{1}+\delta_{1}
\end{array}\right) \quad A_{-1 / 2}=\left(\begin{array}{ccc}
0 & 0 & a_{1} \\
0 & 0 & b_{1} \\
c_{1} & d_{1} & 0
\end{array}\right)
$$

then J_{x} turns out to be

$$
J_{x}=\left(\begin{array}{ccc}
\alpha & \beta-\lambda^{2} & a \lambda \tag{25}\\
1 & -\alpha & 0 \\
0 & b \lambda & 0
\end{array}\right)
$$

and then we can repeat all the above calculations and arrive at a new hierarchy of equations. Finally, it is interesting to note that the four nonlinear fields occurring in equation (15) can be expressed as the following vacuum expectation values:
$\alpha=-\left(\lambda^{-1} t_{+} \cdot 1, \lambda^{-1}\left(\hat{\psi}_{-}^{l}\right)^{-1}\left\{t_{+} \lambda+t_{-}+\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta \lambda^{1 / 2}\right\} \hat{\Psi}_{-}^{l} \cdot 1\right\}$
$b=\left\langle\lambda^{-1} t_{(1 / 2)} \cdot 1, \lambda^{-1}\left(\hat{\psi}_{-}^{l}\right)^{-1}\left\{t_{+} \lambda+t_{-}+\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta \lambda^{1 / 2}\right\} \hat{\Psi}_{-}^{l} \cdot 1\right\rangle$
$\phi=-\left\langle\lambda^{-1} t_{1 / 2} \cdot 1, \lambda^{-1}\left(\hat{\psi}_{-}^{l}\right)^{-1}\left\{t_{+} \lambda+t_{-}+\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta \lambda^{1 / 2}\right\} \hat{\psi}_{-}^{l} \cdot 1\right\rangle$
$\beta=\left\langle\lambda^{-1}\left(3 t_{0}+1 / 2 t_{(0)}\right) \cdot 1, \lambda^{-1}\left(\hat{\psi}_{-}^{l}\right)^{-1}\left\{t_{+}^{\lambda}+t_{-}+\left(t_{(1 / 2)}-t_{(-1 / 2)}\right) \theta \lambda^{1 / 2}\right\} \hat{\psi}_{-}^{I} \cdot 1\right\rangle$.
These expressions are obtained by the simple process of projection on the Heisenberg subalgebra. A glance at the Wilson definition of the τ-function (2) will convince one that it is possible to express these in terms of such τ-functions, but we do not pursue such studies here-we will report them in a future communication.

One of the authors (SP) is grateful to CSIR (Government of India) for a JRF which made this work possible.

References

[1] Kac V 1983 Infinite Dimensional Lie Algebra (Boston: Birkhaliser)
[2] Kac V G and Peterson D H 1985112 Constructions of the Basic Representations of the Loop Group E8Anomalous Geometry, Topology (Singapore; World Scientific)
[3] Frappat L Preprint Vertex Operator Representation of Osp(M,N) LAPP-TH-201/87
[4] Wilson G 1958 Compt. Rend. Acad. Sci. Paris 1299587
[5] Zhang Tu G 1986 Scientia Sinica A XXIX 2138
Roy S and Roy Chowdhury A 1990 Fortschr. Phys. 38875
[6] Tenkroode F 1988 Affine Lie Algebras and Integrable System (University of Amsterdam) Thesis
[7] Van Driel P 1992 Phys. Lett. 274B 179
[8] Mulase M 1988 Invent. Math. 921
Ueno K, Yamada H and Ikeda K 1989 Commun. Math. Phys. 12457

